DATE OF EXAM Solution
SUBJECT NAME - FINAL OR MIDTERM Exam - Semester ENTER I or 11

1. Suppose that >, - |nCy| < 00, where Cy, n € Z are complex numbers. Show that if
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F10) =" inf(n)e™
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where f(n) := = [T f(0)e=™0dp.
Solution: The given function f is 27 periodic and its Fourier series is given by > ., f(n)ein?
where
. 1 :
f(n) = — c7 eme=infq9 = C,,.
2

So we can write f(0) = 3., ., f(n)e™. Now let S,(0) :=) = Sp__, f(k)e"’. The derivative
S! is given as S, (6) = Sp__ ikf(k)e?. Since 3, Inf(n)| < oo, S.(0) converges uniformly.
So we have S,,(6) converged uniformly to ), f(n)e™® = f(#) and S’ () converges uniformly to
Y onez inf(n)e™® = g(0). It implies that f'(6) = g(0).
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2. Let {P-(0),0 <r < 1} be the Poisson kernel, defined as
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Show that for each 0 <r <1,
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Solution: We can directly calculate that
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Note that for 0 < r < 1 the series Znezrm'ei"‘g converges uniformly. So we can interchange the
summation and integration. Also it is easy to see that

/’T eintgr — 2m, n=0
o 0, n # 0.
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Using the expression P,.(6) = 3, ., 71"l and the Plancherel formula, we get

Now we can write
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. Fort >0,z eR?, let H(t,x) == [pa e~ 4T tE 2762 ge  Then show that

d

O;H(t,x) =Y 07H(t,z), t>0,2€R%,

j=1
where Oy, 0; are the partial derivatives with respect to t and x; respectively.

Solution: It is well known that the inverse Fourier transform of the Gaussian e~</7I” is equal to
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e i Using this we get
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Now the only remaining job to prove that H(t,z) = oNCTS 1t

O H(t,z) = 2?21 92H(t,x). we can easily see that

will solve the differential equation
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Differentiating again with respect to x; we have
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Now a direct substitution will give the required answer. O



4. Show that the kernel ki(x) :=

m,t > 0,z € R is an approximate identity.

Solution: Let k(z) = (7(1 + 2?))~1. We can see that

t 1

Since the L' norm of k and k; are same and

1 : _ _
/Rmdx = wh%r{.lo(tan Yz) —tan ™ (—z)) = (7/2) = (—7/2) =7

we get [, ki(x)de = 1. Finally for all § > 0,
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dr =1— Ztan *(6/t) = 0 ast — 0.
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. Let F: L*(RY) — L?(RY) be the extension to L?(R%) of the Fourier transform on L!(R?) given by
the Plancheral theorem. For f € L?(R%), a,b € R?. Compute F(f,) and F(f*) where f,(z) :=
f(zx —a) and fb(z) := e 2707 f(z).

Solution: The Fourier transform F of f € L?(R?) is given by

FUNE = [ fa)emSda,

Now by this definition

Ffa)© = | fla—a)e™ dr.

Apply change of variable y = 2 — a to the above integral we get that F(f,)(¢) = €2 < F(f)(€).
Similarly the Fourier transform of f° is given by

F© = [ e pwe=tdn = [ fa)e =000 = F(1)6+e)



