
DATE OF EXAM Solution
SUBJECT NAME - FINAL OR MIDTERM Exam - Semester ENTER I or II

1. Suppose that
∑
n∈Z |nCn| <∞, where Cn, n ∈ Z are complex numbers. Show that if

f(θ) :=
∑
n∈Z

Cne
inθ,

then
f ′(θ) =

∑
n∈Z

inf̂(n)einθ

where f̂(n) := 1
2π

∫ π
−π f(θ)e−inθdθ.

Solution: The given function f is 2π periodic and its Fourier series is given by
∑
n∈Z f̂(n)einθ

where

f̂(n) =
1

2π

∫ π

−π
Cne

inθe−inθdθ = Cn.

So we can write f(θ) =
∑
n∈Z f̂(n)einθ. Now let Sn(θ) :=) =

∑n
k=−n f̂(k)einθ. The derivative

S′n is given as S′n(θ) =
∑n
k=−n ikf̂(k)eikθ. Since

∑
n∈Z |nf̂(n)| < ∞, S′n(θ) converges uniformly.

So we have Sn(θ) converged uniformly to
∑
n∈Z f̂(n)einθ = f(θ) and S′n(θ) converges uniformly to∑

n∈Z inf̂(n)einθ = g(θ). It implies that f ′(θ) = g(θ).

�

2. Let {Pr(θ), 0 ≤ r < 1} be the Poisson kernel, defined as

Pr(θ) :=
1− r2

1 + r2 − 2rcosθ
.

Show that for each 0 ≤ r < 1,

1

2π

∫ π

−π
Pr(θ)dθ = 1 and

1

2π

∫ π

−π
{Pr(θ)}2dθ =

1 + r2

1− r2
.

Solution: We can directly calculate that

1− r2

1 + r2 − 2rcosθ
=

(1− reiθ)re−iθ + 1− re−iθ

|1− reiθ|2
=

re−iθ

1− re−iθ
+

1

1− reiθ

=

∞∑
n=1

rne−ins +

∞∑
n=0

rneinθ =

−1∑
n=−∞

r−neinθ +

∞∑
n=0

rneinθ

=
∑
n∈Z

r|n|einθ.
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Note that for 0 ≤ r < 1 the series
∑
n∈Z r

|n|einθ converges uniformly. So we can interchange the
summation and integration. Also it is easy to see that∫ π

−π
eintdt =

{
2π, n = 0

0, n 6= 0.

Now we can write
1

2π

∫ π

−π
Pr(θ)dθ =

∑
n∈Z

r|n|

2π

∫ π

−π
einθdθ = 1.

Using the expression Pr(θ) =
∑
n∈Z r

|n|einθ and the Plancherel formula, we get

1

2π

∫ π

−π
{Pr(θ)}2dθ =

∑
n∈Z

r2|n| = 1 + 2r2
1

1− r2
=

1 + r2

1− r2
.

�

3. For t > 0, x ∈ Rd, let H(t, x) :=
∫
Rd e

−4π2t|ξ|2e2πξ.xdξ. Then show that

∂tH(t, x) =

d∑
j=1

∂2jH(t, x), t > 0, x ∈ Rd,

where ∂t, ∂j are the partial derivatives with respect to t and xj respectively.

Solution: It is well known that the inverse Fourier transform of the Gaussian e−α|x|
2

is equal to
1√
4πα

e−
|ξ|2
4α . Using this we get ∫

Rd
e−4π

2t|ξ|2e2πiξ.xdξ =
1

2
√
πt
e
−|x|2

4t .

Now the only remaining job to prove that H(t, x) = 1
2
√
πt
e
−|x|2

4t will solve the differential equation

∂tH(t, x) =
∑d
j=1 ∂

2
jH(t, x). we can easily see that

∂t

(
t−1/2e−

|x|2
4t

)
=

1

2t
√
t
e−
|x|2
4t − |x|2

4t2
√
t
e−
|X|2
4t

and

∂j

(
t−1/2e−

|x|2
4t

)
= − xj

2t
√
t
e−
|X|2
4t .

Differentiating again with respect to xj we have

∂2j

(
t−1/2e−

|x|2
4t

)
= −

x2j

4t2
√
t
e−
|X|2
4t +

1

2t
√
t
e−
|x|2
4t .

Now a direct substitution will give the required answer. �
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4. Show that the kernel kt(x) := t
π(t2+x2) , t > 0, x ∈ R is an approximate identity.

Solution: Let k(x) = (π(1 + x2))−1. We can see that

kt(x) =
t

π(t2 + x2)
=

1

t
k(
x

t
).

Since the L1 norm of k and kt are same and∫
R

1

1 + x2
dx = lim

x→∞
(tan−1(x)− tan−1(−x)) = (π/2)− (−π/2) = π

we get
∫
R kt(x)dx = 1. Finally for all δ > 0,

1

π

∫
|x|≥δ

1

t

1

(x/t)2 + 1
dx = 1− 2

π
tan−1(δ/t)→ 0 as t→ 0.

�

5. Let F : L2(Rd)→ L2(Rd) be the extension to L2(Rd) of the Fourier transform on L1(Rd) given by
the Plancheral theorem. For f ∈ L2(Rd), a, b ∈ Rd. Compute F(fa) and F(f b) where fa(x) :=
f(x− a) and f b(x) := e−2πb.xf(x).

Solution: The Fourier transform F of f ∈ L2(Rd) is given by

F(f)(ξ) =

∫
Rd
f(x)e−2πix.ξdx.

Now by this definition

F(fa)(ξ) =

∫
Rd
f(x− a)e−2πix.ξdx.

Apply change of variable y = x − a to the above integral we get that F(fa)(ξ) = e2πa.ξF(f)(ξ).
Similarly the Fourier transform of f b is given by

F(f b)(ξ) =

∫
Rd
e−2πb.xf(x)e−2πix.ξdx =

∫
Rd
f(x)e−2πix.(b+ξ)dx = F(f)(b+ ξ).
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